Handover Report
Project Puzzlebox

Thomas in 't Anker, Loek Le Blansch, Lars Faase, Elwin Hammer

Version 0.0, 2024-04-01: draft

Table of Contents

L INtrOdUCHION . ..o e
CGIOUP NIStOrY . . .o e
CPrOJeCt State. e e
CNCIdENES o e e e

A WODN

4.1, DOCUMENLALION.ttt e
4.2, MISCONCEPIIONS . . oottt e e
A 3. P
4.4. Development hardware availability.
4.5, Auxiliary workarounds and technical limitations.
5. ReCOMMENatiONS.o e
DL IMPEIALIVES. . . o oo e
5.2. Other suggestionsSt
AppendixX A: REfEIENCES
ApPPEeNdiX B: GlOSSaryo e

List of Figures

List of Tables

Table 1. Project group composition

1. Introduction

This is an (at times slightly informal) document that summarizes how the 23-24 run of this project
went. We found the previous handover documents to be unhelpful when determining the 'actual’
state of the project in the first few weeks, and felt they did not address the pitfalls of this project.

The team of year 2023-2024 consisted of only software students (see Table 1), meaning no hard-
ware was developed in this year. The goal of this year is to create a software framework which
can be used to implement new puzzles and to make the development process of these puzzles
easier, and allow the entire software stack to be ported to the the hardware designed by the 22-
23 group.

Previous years' groups have put their predecessor's documents inside their own project folder,
which has resulted in what we called the 'Russian doll folder structure'. Loek Le Blansch has sep-
arated out each years project folder (‘master file'), and is hosting these on
https://media.pipeframe.xyz/puzzlebox. This directory is also mountable as a read-only WebDAV
share on Windows, MacOS and Linux (using davfs2), and does not require credentials to log in.
Please note that this is very much unofficial, and is not managed or endorsed by Avans. Loek Le
Blansch is the contact for removal or transfer of these files.

2. Group history

Year Name Study path
19-20 Daniél Janssen Software
Dion Legierse Software
Jop van Laanen Hardware
Max van den Heijkant Software
20-21 Joost van Wiechen Hardware
Justin Maas Software
Merel Creemers Hardware!
Vincent Lengowski Hardware
21-22 Alex van Kuijk Hardware
Jef Baars Software
Julian de Bruin Software
Lucas van Gastel Software
Toon Rockx Hardware
22-23 Frank Bekema Hardware
Jasper Gense Hardware
23-24 Elwin Hammer Software
Lars Faasel Software
Loek Le Blansch Software
Thomas in 't Anker Software

Table 1. Project group composition

3. Project state

The current project state is as follows:

* No new hardware has been designed or developed this year
» The software was completely revised, now consisting of
- a puzzle bus driver (pbdrv)

https://media.pipeframe.xyz/puzzlebox

- a main controller
- a simple CLI application
- two puzzle modules (‘Vault' and 'NeoTrellis") integrated using the puzzle bus driver

Functionality:

» The main controller (a RPI Pico W) can interact with the different puzzle modules using a
central shared I2C bus (referred to as the 'puzzle bus')

» The main controller is able to find new puzzle modules on startup, and does not check for
new modules afterwards.

» A simple CLI application has been developed, which can communicate with the main con-
troller through a TCP connection and allows control over various aspects of the puzzle box
using simple commands.

Documentation:

» These project documents
* Detailed usage and APl documentation for all software modules [1]

4. Incidents

During this year's run of the project, we encountered several difficuties we feel need to be
addressed in order to be mitigated in future runs of the project. We recommend that these inci-
dents are analyzed by future project groups and incorporated into the risk analysis section of
future project plan documents.

4.1. Documentation

We spent too much time working on documentation at the start of the project. Make sure you set
clear deadlines for documentation, and try not to spend too much time on review procedures, as
these cost a lot of time.

Our project documentation was originally written in Microsoft Word, but we later transferred all
documentation to AsciiDoc because of issues where OneDrive would roll back changes. If possi-
ble, use a documentation system or format that allows using an external version control system
like Git to avoid losing content. This is also the reason why our documents may contain format-
ting/style errors.

4.2. Misconceptions

Make sure to know what you are developing and do some research beforehand, to make sure
you have a complete picture about what you are using. Sounds stupid, but it happened for multi-
ple project attempts, and caused time loss. This also includes when you want to use documenta-
tion of previous years: go through the documentation and verify it on the lowest possible level for
the same reason as previously mentioned.

4.3.I°)C

I2C is used because it is widely available and easy to implement. We strongly recommend 3rd
year software students to refresh their knowledge on I2C before making major design decisions
that rely on their conception of how to I2C bus works.

Please note the following differences between I1>C devices:

» Regular I°C slave peripherals are allowed on the puzzle bus, and can be connected to the
puzzle bus as long as they do not cause issues with addressing.

* |2C master controllers must have hardware support for a multi-master hardware configura-
tion (i.e. support bus arbitration on a hardware level). Arbitration support is required to pre-

vent message corruption or electrical shorts in a multi-master setup. Multi-master con-
trollers may also be connected to the puzzle bus, but only as long as they only interact with
regular 12C slave devices.

* |2C multi-master controllers that are slave-addressable in master mode are the only kind of
I2C controller suitable for use in puzzle modules. Microcontrollers with 2 I2C peripherals on
the same bus (one in master mode, one in slave mode) can also be used to achieve the
same effect.

The RP2040 supports multi-master, but is not addressable as a slave in master mode. This was
mitigated using a workaround (see RP2040 I2C limitations).

4.4. Development hardware availability

When choosing or using specific chips or development boards, make sure to include research on
the product lifecycle. Choosing boards/chips that have planned long term support makes it easier
for the next project team to order and use the same chips/boards instead of having to find new
ones.

Due to a lack of foresight, only 2 Picos were ordered this year, which caused unoptimal workload
spread during the last weeks of the project. Because of this, we also strongly recommend making
enough development boards available for multiple people to develop using the same setup. Note
that the RPI Pico is a special case, as it requires another Pico for debugging, effectively requiring
double the amount of hardware to support developers.

Due to a misunderstanding, we also thought our development boards went missing somewhere
during week 13. Double-checking if project materials were actually stolen, or making clear where
the materials are stored by sending an image of its location could have easily avoided this from
happening; make sure to do either.

4.5. Auxiliary workarounds and technical limitations

This section details workarounds that were implemented instead of being fixed due to time con-
straints or project scope. Workarounds that should be removed are marked with FIXME: com-
ments referring to one of the workarounds mentioned in this section.

RP2040 I°C limitations
» The RP2040 is not slave-addressable while in master mode. A workaround that uses both
I2C peripherals simultaniously was written to work around this issue.
Memory management on Arduino
The Arduino’s built-in memory management functions do not seem to work properly. The FreeR-
TOS heap 4 memory management functions are used on the puzzle modules instead. FreeRTOS
does not have an implementation of the realloc() function.

» mpack’s writer APl cannot be used with a writer initialized using the mpack_writer_init_-
growable function on Arduino-based puzzle modules. The mpack_writer_init function is
used with a static size buffer instead.

5. Recommendations

This section details our recommendations on course of action for future project groups.

5.1. Imperatives

The following points must not be dismissed by future project groups, as they are critical for
project success:

e The 22-23 design document already mentions that the application of the I°C bus is in a
multi-master configuration, but does not mention that this only works when pull-up resistors

are used on the SCL and SDA lines. The pull-up resistors are required, as omitting them
makes the bus arbitration process very inconsistent which causes frames to be dropped
entirely.

 Start creating prototypes as early as possible; this benefits the project in the long run, as
you have already shown that certain parts of the project are already working and "only"
need to be integrated.

» The Atmega328P and ATmega2560 MCUs are both sufficient for the puzzle modules as
they have enough I/O, mutli-master hardware support, and the ability to be addressed as a
slave while being in master mode.

» The RPI Pico (and Pico W)'s I°C peripheral supports multi-master, but does not support
being addressed as a slave while in master mode. This is required for puzzle bus integra-
tion, and was mitigated using a workaround (see RP2040 I2C limitations).

5.2. Other suggestions

These points are suggestions for future project groups. While we do not think these are critical to
project success, we still think they are important to mention.

» The hardware design from the year 22-23 should be implemented.

» The original game rules are described in a separate document from the year 20-21.

* The RPI Pico W has programmable 1/0 modules. Due to time constraints, we did not
research if these modules can be used to create a custom I2C peripheral (and driver) that
allows multi-master communication while still being addressable as a slave. If this is possi-
ble, the RPI Pico W could be used without the use of workarounds.

Appendix A: References

[1] L. L. Blansch, E. Hammer, L. Faase, and T. in 't Anker, “puzzlebox Doxygen documentation,”
2024. [Online]. Available: https://media.pipeframe.xyz/puzzlebox/23-24/doxygen.

Appendix B: Glossary

RPI
Raspberry Pi

Main board
The main board is the PCB on the bottom of the puzzle box, this communicates with the puzzles
and the bomb

Puzzle box hub
The puzzle box hub communicates with the puzzle box and the bomb, as well as helps with con-
figuring them

SID
Security identifiers

game operator
Person who organizes a puzzle box play session

[1] The handover report from 20-21 mentions: "Het frame zelf is niet gelukt om te realiseren, omdat er communicatie tussen het
projectgroep en de CMD-student uit het niets is verdwenen". Merel Creemers was introduced as a hardware-student in the
project plan, but is no longer mentioned in the handover report, which may indicate that they were removed from the project
group. | am unsure if they were a hardware student that worked on the PCBs or a CMD student working on the puzzle box
chassis.

[2] Lars Faase was removed from the project group on 2024-06-03 following complaints about the lack of communication, and
lack of motivation

https://media.pipeframe.xyz/puzzlebox/23-24/doxygen

	Handover Report: Project Puzzlebox
	Table of Contents
	1. Introduction
	2. Group history
	3. Project state
	4. Incidents
	4.1. Documentation
	4.2. Misconceptions
	4.3. I2C
	4.4. Development hardware availability
	4.5. Auxiliary workarounds and technical limitations

	5. Recommendations
	5.1. Imperatives
	5.2. Other suggestions

	Appendix A: References
	Appendix B: Glossary

