
Research
Project Puzzlebox

Thomas in 't Anker, Loek Le Blansch, Lars Faase, Elwin Hammer

Version 0.0, 2024-04-01: draft

Table of Contents
1. Microcontrollers used in the current state (Elwin) . 4

1.1. Research . 4

1.2. Summary . 4

1.3. Conclusion . 4

1.4. NOTES. 5

1.4.1. Appendix (Loek) . 5

2. Controllers (Loek) . 5

2.1. Main controller . 5

2.2. Puzzle module controller . 6

2.3. Conclusions . 6

3. Unit Testing Framework Research (Thomas). 7

3.1. Research question . 7

3.2. General framework comparison. 7

3.3. CppUTest . 7

3.4. Catch . 7

3.5. Doctest. 8

3.6. Google Test . 8

3.7. Boost.Test . 8

3.8. Conclusion . 8

4. I2C (Thomas) . 9

4.1. Research question . 9

4.2. Puzzle Module and Main Controller Communication . 9

4.2.1. MCUs Supporting Master Addressable as Slave . 9

Atmega328p . 9

PIC16F15276 & ESP32 . 9

4.2.2. Alternatives . 9

PIC16F15276 Registers . 9

Multiple I2C Peripherals . 9

4.2.3. ESP32 & RP2040. 9

4.3. Puzzle Module Detection . 9

5. Original Puzzle Box Functionality Research (Thomas) . 10

5.1. Research question . 10

5.2. Group 2019-2020. 10

5.2.1. Hardware Puzzle . 10

5.2.2. Software Puzzle . 10

5.2.3. Automation Puzzle . 10

5.2.4. Safe Puzzle . 11

5.3. Group 2020-2021. 11

5.3.1. Hardware Puzzle . 11

5.3.2. Software Puzzle . 11

5.3.3. Neotrellis Puzzle . 11

5.4. Group 2021-2022. 11

5.4.1. Hardware Puzzle . 11

5.5. Group 2022-2023. 12

5.6. Conclusion . 12

6. Research of hardware designs of previous groups (21-22 and 22-23) (Lars) 12

6.1. Design of 21-22 group . 12

6.2. Design of 22-23 group . 13

6.3. What are the differences between the designs of the 21-22 and 22-23 groups?. 13

6.4. What to consider when developing software . 14

Appendix A: Attachments . 14

Appendix B: References . 23

Appendix C: Glossary . 24

List of Figures
Figure 2. Main architecture
Figure 3. Safe side
Figure 4. Neotrellis side
Figure 5. Software side
Figure 6. Hardware side
Figure 7. Software side PCB
Figure 8. Safe side PCB
Figure 9. Unknown PCB
Figure 10. Hardware side PCB
Figure 11. Bus cable
Figure 12. Neotrellis side PCB
Figure 13. Light sensor
Figure 14. RPI PCB (Head)
Figure 15. Automation puzzle example
Figure 16. Software puzzle box example
Figure 17. Software puzzle game manual example
Figure 18. Neotrellis puzzle toggle example
Figure 19. Neotrellis puzzle 8x8 example
Figure 20. Neotrellis pattern example
Figure 21. Safe puzzle schematic example
Figure 22. Safe puzzle combinations given in the manual

List of Tables
Table 1. Main controller MCU candidates
Table 2. Puzzle module controller MCU candidates
Table 3. General testing framework comparison [4, 5]

3

1. Microcontrollers used in the current state (Elwin)

1.1. Research
The boxes consist of four sides in use (games) which can be seen in the Attachments figures 1
through 4. One of the games (safe puzzle) seems to be unfinished upon visual inspection which
also includes a lose display. The games that seem to be implement are the following:

• Safe puzzle: Figure 3
• Neotrellis puzzle: Figure 4
• Software puzzle: Figure 5
• Hardware puzzle: Figure 6

The bus cable (Figure 11) consists out of five connectors with ten lines, the main controller (as
already known) is a Raspberry Pi 3B+ with an 8GB MicroSD card and a custom PCB 'head' see
Figure 14. There are 4 custom PCB’s with a microcontroller slot and a connector for the 10-line
bus, two of those are used for the sides and one is unused and also empty see Figure 9. Of all
the custom PCB’s only one seems to be professional made from a factory see Figure 10, the oth
ers seem to be made at school in the lab.

• Safe puzzle PCB: Figure 8
• Software puzzle PCB: Figure 7

There is also one development board from Adafruit see Figure 12 but this one does not seem to
be connected to any bus. The underside of the box has a large light sensitive sensor which is
also not connected see Figure 13.

The more professional custom-made PCB has an ESP32-PICO-D4 as microcontroller see Figure
10. The other custom-made PCB’s do not have any microcontroller installed but seem to be
made to be used by a ESP32-PICO-KIT V4/V4.1.

1.2. Summary
There seems to be four games implemented where of only one may work because of its inte
grated ESP32, the other three also may work if the missing ESP32’s are included but it is unclear
if the 'unknown' PCB should be used in combination with the Neotrellis panel and what need to
be done with the safe side to get it to work.

1.3. Conclusion
It could be quite possible that the 'unknown' PCB should be connected to the Neotrellis panel
based on the data lines properties. But besides that, only the software may need to be updated in
order to run on the ESP32’s as soon as the 'missing' ESP32 dev kits are in stock.

But everything could be made less complex, more cost effective and power efficient by using
other type of microcontrollers. The RPI could be downgraded to a RPI Zero or an ESP32 dev kit.
The microcontrollers used for the sides could be replaced by a much smaller chip like the ATTiny
or a Atmega32.

This can only be done if the following requirements are met:

• Dev. Board or daughterboard with spring or screw terminals
• A microcontroller with enough IO
• A microcontroller with all the required communication busses.
• It may not cost more than one day to rebuild the system.

A follow up research should reveal which microcontroller and dev. Board / daughterboard is best
fitted for this project.

4

1.4. NOTES
The Dev kits are not available and newer types do not meet the current footprint of the custom
PCB’s. So it is suggested that the next group will design a pcb with another MCU on it in order to
match the pin layout and make use of a smaller more efficient chip. Or they can convert the pro
totype PCB’s to a production version with the ESP32 chip on it (if the chip it self it still available at
that time) or pick another MCU in that stage anyway.

The hardware side uses a single DSP (HC166) to process the input of the switches, the software
side uses two shift registers (74HC59SD) to control the LED’s.

Issues

1. Button row 4, col 1 for the safe side needs to be replaced (missing a pin)
2. LED strips for the software and hardware sides only work for 50%.

1.4.1. Appendix (Loek)
The puzzle bus connector (see Figure 11) appears to have 10 conductors in total. The hardware
schematics from 21-22 reveal the pinout of this bus connector, which is shown in Figure 1.

After searching through the other design documents from this year, no references to the "Har
wareInterrput" line or interrupts in general were found. The puzzle source code folders also did
not contain code which initialized this line as an interrupt. It is assumed this line is unusable, as it
is connected but has no specified functionality.

Figure 1. Puzzle bus pinout

Source: [1]
(Connector key is next to pin 5)

2. Controllers (Loek)
To mitigate power consumption issues discovered by the 21-22 group, new controllers were cho
sen for this year’s (23-24) run of the puzzle box project. This section compares different micro
controller options for both the main controller and controller used in puzzle modules.

2.1. Main controller
The following criteria were used to compare MCUs that are suitable candidates as main con
troller unit:

• Must have at least 1 I2C peripheral (R-136).
• Must be able to connect to a standard 802.11b/g/n access point (R-137).
• Must be able to serve TCP socket connection(s) (R-138).
• Should be power efficient (R-166).
• Is available as a development kit from Farnell (R-139).

Table 1 lists the considered MCU options matching the above criteria. This list is a compilation of
microcontroller offerings from the following manufacturers: Atmel, Espressif, Raspberry Pi.

Of these controllers, the Raspberry Pi RP2040 has the lowest clock speed and highest memory.

5

reqs.pdf#req:main-i2c-ctrl
reqs.pdf#req:main-802-11-ap
reqs.pdf#req:main-tcp-socket
reqs.pdf#req:main-pwr-efficient
reqs.pdf#req:main-devkit-supplier

Its lower clock speed means that it will likely draw less power than the other options. It also hap
pens to be less expensive than all other options. Due to these reasons, the RP2040 was chosen
as main controller MCU. The Raspberry Pi Pico W board is utilized during development.

Note

This was written while we did not know the puzzle bus specifically requires slave-
addressible I2C multi-master controllers to function properly. The RP2040 was still
used, but has required implementing workarounds. Please see the handover report for
more details on how this impacted the project [2].

Model I2C peripheral count SRAM Flash Clock speed
WFI32E01PC 1 256 KB 1 MB 200 MHz
ESP8266 1 50 KB 16 MB 160 MHz
RP2040 2 264 KB 2 MB 133 MHz[1]

Table 1. Main controller MCU candidates

2.2. Puzzle module controller
The following criteria were used to compare MCUs that are suitable candidates for controlling the
puzzle modules:

• Must have at least 1 I2C peripheral (R-141).
• Should has enough I/O ports to directly control moderately complex puzzles (R-142).
• Should be power efficient (R-143).
• Is available as a development kit from Farnell (R-145).
• Has a configurable clock speed (R-144).

Table 2 lists the considered MCU options matching the above criteria. This list is a compilation of
microcontroller offerings from the following manufacturers: Atmel, STMicroelectronics, Raspberry
Pi.

All the MCUs listed in Table 2 support some version of a low-power mode. The RP2040 is again
included and appears here because it supports clock speed configuration and has a clock gate
for each peripheral [3], which may make it a feasible option with regards to power consumption.
Choosing the RP2040 may also simplify the development process as only a single MCU tool
chain needs to be maintained.

The Microchip PIC16F15276 is the most power efficient on this list and is the recommended
MCU for puzzle modules. It supports both extreme underclocking and has a low power mode.
This chip is available as the 'MICROCHIP EV35F40A' evaluation kit.

Because this year’s run of this project was carried out by a team consisting only of software stu
dents, this choice remains as a recommendation. The puzzle box hardware may still use the
ESP32 development kits from the 21-22 group.

Note
This was written while we did not know the puzzle bus specifically requires slave-
addressible I2C multi-master controllers to function properly. We have not verified if the
PIC16F15276 supports this feature.

Model I/O ports I2C peripheral count SRAM Flash Clock speed
PIC16F15276 40 1 2 KB 28 KB 32 kHz – 32 MHz
STM8L152C6T6 41 1 2 KB 32 KB 38 kHz – 16 MHz
RP2040 26 2 264 KB 2 MB 10 MHz – 133 MHz

Table 2. Puzzle module controller MCU candidates

2.3. Conclusions

6

reqs.pdf#req:pm-i2c-ctrl
reqs.pdf#req:pm-gpio
reqs.pdf#req:pm-pwr-efficient
reqs.pdf#req:pm-devkit-supplier
reqs.pdf#req:pm-clk-ctrl

The main MCU that is utilized for this year’s (23-24) run of this project is the Raspberry Pi
RP2040 on the Raspberry Pi Pico W. The recommended MCU for new puzzle modules is the
Microchip PIC16F15276. The existing puzzle modules still utilize the ESP32 development kits
chosen by the 21-22 group.

3. Unit Testing Framework Research (Thomas)

3.1. Research question
Which unit testing frameworks are available and relevant to the project, keeping in mind RTOS-
specific frameworks, and what features do they have?

3.2. General framework comparison
In Table 3 is a general comparison shown of multiple different frameworks. These are either a
header-only testing framework, a testing framework specifically designed for embedded systems,
a general-purpose C++ library, or a specialized C++ unit testing framework. The following sub
sections will give more information about each framework and their features.

Framework Language Lightweight Mocking Support Portable
CppUTest C/C++ Yes Yes (CppUMock) Yes
Catch C++ Yes Limited Yes
Doctest C++ Yes Limited Yes
Google Test C++ No Yes (GMock) Yes
Boost.Test C Yes Limited Yes

Table 3. General testing framework comparison [4, 5]

3.3. CppUTest
A C/C++ based unit testing framework, designed specifically for testing C/C++ applications on
embedded systems. It can be used for testing general C/C++ code and supports TDD-style tests
(Test-Driven Development). This is due to it being a header-only testing framework, and not
requiring linking of external libraries.

It offers multiple different assertion macros for verifying expected behavior and supports the
mocking of functions and memory leak detection. It works on most platforms, including Unix-
based systems, Cygwin, and MacOS. It can be integrated with build systems like Make or
CMake. The framework is also compatible with RTOS-based applications and Raspberry Pi, both
require configuring the development environment to allow CppUTest to work. It supports up to the
C++17 standard, after which there is experimental support for the C++20 & C++23 standards. [6]

3.4. Catch
A C++ unit testing framework designed in a straightforward and expressive manner. Just like
CppUTest it is a header-only testing framework and doesn’t have any external dependencies, but
instead of supporting TDD-style testing, it supports BDD-style testing. Which is Behavior-Driven
Development-style testing, where test cases can be written in a natural language format (Given-
When-Then statements).

It offers a simplified testing syntax, and assertions look like C++ Boolean expressions. It allows
the developer to organize tests into sections, providing a local (in file) way to share setup and
teardown code. It also allows developers to tag tests and run tests selectively using their tags.
The framework is also compatible with RTOS-based applications and can be used on a Rasp

7

berry Pi. It supports up to the C++20 standard, after which there is experimental support for the
C++23 standard. [7]

3.5. Doctest
A C++ based unit testing framework, designed to be minimalistic, easy to integrate and expres
sive. It supports C++11/14/17/20/23 and allows for writing tests directly in production code, due
to it being a single-header library.

The tests written with this framework are automatically discovered and executed without any
manual registration. It has no separate compilation steps for the tests as it is header-only and is
thread-safe by default. It also allows for customizable test output formats and is compatible with
RTOS/Raspberry Pi. [8]

3.6. Google Test
A C++ based testing framework, following the xUnit architecture, which is used for structuring
tests. It is a single-header library just like doctest; however, it does require the developer to write
tests in separate test files. It has minimal external dependencies allowing it to easily integrate into
projects.

It supports mocking functions and has a large variety of assertions for verifying expected behav
ior, including death tests. It allows the developer to run tests multiple times with different input
values and the developer can set up common test environments using fixtures. Furthermore, it
allows for custom assertions and test output. It is also thread-safe by default. It supports testing
for RTOS/Raspberry Pi, as well as C++20 and lower. There is experimental support for C++23. [
9]

3.7. Boost.Test
A C++ based unit testing framework, designed for writing, and organizing unit tests. It is compati
ble with C++11/14/17 and can be integrated with C++ projects running on RTOS platforms. How
ever, even though you can use Boost.Test on the Raspberry Pi, it does not have direct Raspberry
Pi-specific features.

It supports the creation of test suites, allowing the developer to group test cases into logical
suites. Furthermore, it provides a wide range of assertion macros for checking test conditions
and can generate test result reports in various formats (e.g. XML, human-readable). It works on
most platforms, including Windows, Linux, macOS, and other Unix systems. [10, 11]

3.8. Conclusion
After going through the researched unit tests a few things can be noted for each framework.
CppUTest has been designed for embedded system testing and has features for memory leak
detection and mocking. However, it is supported until C++17 while the other versions for C++ are
all experimental. Catch allows for easy test creation. Furthermore, it allows for test tagging mean
ing you are able to run tests selectively using their tags and it is supported up to C++20. Doctest
allows for writing tests directly in production code, meaning a second test file is not necessary. It
has an automatic test discovery function, as well as being thread safe on default and allowing
customizable test output formats. Google Test uses xUnit test architecture and supports mocking
functions. It has a large variety of assertions including death assertions and supports running
tests multiple times with different input values. It allows custom test assertions / test output and is
thread-safe by default. It also has support up to C++20. Boost.Test allows for writing and organiz
ing unit tests and has support for C++11/14/17. It supports the creation of test suites, making test
grouping possible. It has a large range of assertion macros and can generate test result reports
in multiple different formats.

After going through the notable features of the different testing frameworks Google Test was cho

8

sen as the testing framework for this project. As it has a structured syntax, readability and a lot of
features required for reliable testing. Including mocking tests, a large amount of assertions, multi
ple test with different input support, and lastly being supported in the newest non-experimental
version of C++.

4. I2C (Thomas)

4.1. Research question
How can we use I2C for the puzzle module detection and communication?

4.2. Puzzle Module and Main Controller Communication
Research from project group 21/22 shows that the I2C protocol is the best option for communica
tion between the puzzle modules and the main controller. This research section extends the pre
vious section about which MCU is suitable for the puzzle bus, as we have found vital I2C limita
tions with the controller we had chosen. See the handover document for the found limitations.

4.2.1. MCUs Supporting Master Addressable as Slave

Atmega328p

The Atmega328p has multi-master support, where the MCU is addressable as a slave while
being in master mode. This has been confirmed using the Arduino wire library on both the
Arduino Mega and the Arduino Uno.

PIC16F15276 & ESP32

Both the PIC16F15276 [12] and the ESP32 MCUs show possibilities to be addressable as a
slave while being in master mode. However, at the moment of writing this has yet to be tested.

4.2.2. Alternatives

PIC16F15276 Registers

In the case of the PIC16F15276 [12] not support master addressable as slave the following
approach would most likely work. As the PIC16F15276 uses specific registers for its master
receive functions, namely the RCEN register, it can be manually set to receive data from the I2C
bus. However, this also has yet to be tested.

Multiple I2C Peripherals

4.2.3. ESP32 & RP2040
The ESP32 [13] [14] [15] and the RP2040 both have multiple peripherals for I2C communication,
while also supporting simultaneous configuration. This allows both two I2C peripherals to be
active, one being configured as a master and the other being configured as a slave. This enables
the controller to send and receive data to the I2C bus without much difficulty. This does introduce
increased code complexity but is a valid option if it is succesful in testing.

4.3. Puzzle Module Detection
Puzzle module detection is vital to the puzzelbox, as this allows changing the puzzles without
much software or hardware configuration needed. An option will be given for the choice of main

9

controller (RP2040); namely to scan the full I2C bus for responsive slaves. The RPI Pico SDK has
an API for I2C which also supports functions create a bus scanning function. An example of this
bus scan function, according to the API examples, can be found in the pseudo code below.

#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/i2c.h"

void bus_scan() {
 int ret;
 uint8_t rxdata;

 for (int addr = 0; addr < (1 << 7); ++addr) {
 ret = i2c_read_blocking(i2c_default, addr, &rxdata, 1, false);
 printf(ret < 0 ? "." : "@");
 printf(addr % 16 == 15 ? "\n" : " ");
 }
 printf("Done.\n");
}
The bus scan function tries to read data from all possible I2C addresses, and prints a table which
shows what the addresses are from found I2C slaves. This is possible due to the i2c_read_block
ing function, which returns the length of the read data if the slave address is in use (in this case
1) or a number below 0 if the slave address is not in use. The puzzelbox, however, has the
'Neotrellis' puzzle which also uses I2C to function. The bus scan function would also see the
'Neotrellis' rgb matrix as a puzzle module (slave) using this implementation. This can easily be
fixed using a handshake between puzzle modules and the main controller, as the 'Neotrellis' rgb
matrix cannot answer this handshake and is therefor not recognized as a puzzle module.

5. Original Puzzle Box Functionality Research
(Thomas)

5.1. Research question
What gameplay functionality should the original puzzle box have had?

5.2. Group 2019-2020

5.2.1. Hardware Puzzle
The hardware puzzle was to be a puzzle consisting of two parts, a puzzle using a 555-oscillator
and a puzzle using a multi meter. The 555-oscillator puzzle would be used to give students an
idea how they can create a typical hardware application. The multi meter puzzle would introduce
students to the usage of the multi meter, while giving the bomb group the values measured using
the multimeter which then correlates with 3 different potentiometers.

5.2.2. Software Puzzle
The software puzzle was to be a puzzle which introduces the student to an Arduino. The puzzle
box would contain an Arduino, a few switches, and a few LEDs. The student would be able to pro
gram the Arduino by using a visual drag-and-drop programming language. This program would
have to get an input value, which is given by the switches, and an output value shown on the
LEDs. The idea is to get both the input and output value correspond with each other.

5.2.3. Automation Puzzle
The automation puzzle would introduce the student to a factory structure, consisting of multiple

10

'tubes' which contain a certain color. These colors could be mixed by the students to get the cor
responding colors shown in their game manual. The tubes which contain these colors would have
to follow a specific route, and are to join with other tubes, creating new colors which makes the
puzzle a bit more complex. The valves to open and close the tubes are grouped to add another
difficulty level to the puzzle. See Figure 15 for an example of this puzzle.

5.2.4. Safe Puzzle
The safe puzzle is a puzzle created to test the communication skills of the student. It shows a
code on the puzzle box, which then needs to be given to students with the game manual, who
give the students at the puzzle box the button they must click. This needs to be done 5 times
before the safe opens and the last code is given to defuse the bomb if a wrong button is clicked
the safe resets and they need to start over from the beginning. See Figure 21 & Figure 22.

5.3. Group 2020-2021
The automation and safe puzzle were not changed this year.

5.3.1. Hardware Puzzle
The hardware puzzle was revised this year, it would include a quiz which helps the students with
solving the puzzle and has a completely different interface from the first one. The quiz questions
can be found in the document "Speluitleg_puzzlebox_39-06-2021", which can be found in this
project’s directory. Once the students solve the quiz, they can push the button found in the puz
zle, and morse code will be given to the students. The code given using morse code is one of the
required codes to disarm the bomb.

5.3.2. Software Puzzle
The software puzzle was also revised this year, instead of a puzzle using a visual drag-and-drop
programming language it would instead contain two columns which would need to relate to each
other. One column shows digital ports, which is part of 'Digitale Techniek' and the second column
contains letters corresponding with C code. This code can be found in the game manual and
requires the students to communicate between each other which letter which code is. Once all
cables are connected the LEDs above the puzzle will glow in binary, this needs to be deciphered
into decimals to get another code to defuse the bomb. An example of this puzzle can be seen in
Figure 16 & Figure 17.

5.3.3. Neotrellis Puzzle
A new puzzle was added to the box, namely a neotrellis-type puzzle. This would mainly be a puz
zle requiring a lot of figuring out, as it does not correlate with any of the three directions in the
Technical Computer Science curriculum. It would contain an 8x8 LED button system, where you
can toggle the LEDs by clicking on a button. You complete the puzzle by getting a matching pat
tern with the one given in the game manual. See Figure 18, Figure 19 & Figure 20 for examples
of this puzzle.

5.4. Group 2021-2022
The software, automation, safe, and neotrellis puzzles were not changed this year.

5.4.1. Hardware Puzzle
The hardware puzzle was revised again this year, removing the quiz, and making it a data flow
puzzle using logic gates and circuitry. There wasn’t any more information about the way to solve
the puzzle. See Figure 6 for an example of this puzzle on the puzzle box.

11

5.5. Group 2022-2023
No puzzles were changed this year.

5.6. Conclusion
The puzzles have gone through a lot of changes and designs, but in the end the following puz
zles will be used from project group 2019-2020:

• Automation puzzle
• Safe puzzle

The following puzzles will be used from project group 2020-2021:

• Software puzzle
• Neotrellis puzzle

And the following puzzle will be used from project group 2021-2022:

• Hardware puzzle

The way these puzzles are solved has been summarized in this research document, but the most
complete versions of how to solve these puzzles are given in the group’s respective design docu
ment.

6. Research of hardware designs of previous groups
(21-22 and 22-23) (Lars)
This part of the research looks at the hardware designs of the previous groups that did this
project. These are compared with each other and finally the points of interest are given that the
software must meet in order to work with this hardware.

6.1. Design of 21-22 group
This group has developed a puzzle box with a puzzle on all sides. Each puzzle has to answer a
question from the different directions in this study. So, think software, hardware and an automa
tion puzzle. The 21-22 group designed and started the realisation of a physical puzzle box. The
status of the puzzle box is a carved wooden box containing one mainboard hat for the Raspberry
PI 3B+ (chosen for its availability), one puzzle based on the ESP32-PICO-D4 system on chip
(SOC) and three puzzle prototypes based on the ESP32-PICO-KIT (D4 development kit). The
puzzle boards are mounted on the sidewalls of the wooden box and are game technically largely
functional. Behind this chosen hardware is not a thoughtful choice but was chosen mainly due to
availability and because these components have been used by students before.

The four puzzles have game-playing software, but the puzzles have not yet been play-tested. All
puzzles run on the same state machine, the communication module for I2C communication
between the puzzles is integrated but not yet fully implemented. So, communication is possible
but not processed in the state machine other than resetting the game and reading the state. The
I2C module for the mainboard has also been worked out in a C++ application for the Raspberry
PI 3B+.

To communicate via a network between the puzzle box and the bomb, a hub is used. Next to the
connection between the devices in the local network, the hub will also connect to the internet for
time synchronization and external configuration. The hub will also act as a webserver for the con
figuration of the boxes and bombs and, as a network manager for the communication between
the devices. The hub makes also use of a Raspberry Pi 3B. The raspberry pi for the main hub will
be combined with a wireless USB dongle due to the need for multiple wireless radios. The USB
dongle used for this project has not been defined, any dongle supporting the 802.11x standard

12

will qualify.

6.2. Design of 22-23 group
What did the group from 22-23 develop as a hardware design?

At the start of their project, the 22-23 group has been busy re-structuring the puzzle box devel
oped by 21-22. The basis of 21-22 was not well structured, there were low requirements and
specifications and little research available. As a result, this group (21-22) did have time to realise
their design. However, the end result of this was a half-working puzzle box with no coherent hard
ware. As a result, the 22-23 group chose not to implement hardware but first structured the
project properly with requirements and then went on to create a thoughtful design.

The new design consists of a mainboard connected to the puzzle box via a puzzle bus (consist
ing of: 5V, 3.3V and I2C). The idea of the puzzle box is that it is developed modular way so that
puzzles can easily be removed and inserted. Therefore, one standard interface (puzzle bus) is
designed to which every puzzle can be connected. Each puzzle therefore also needs its own
microcontroller to control the logic. So, the choice of microcontroller of both the puzzles and the
mainboard has not yet been made by this group. However, this group did give a number of points
that the microcontroller must meet in order to work with the hardware design:

• Operationeel op een voedingsspanning van 3.3V of 5V
• Ondersteuning van I2C
• Voldoende I/O voor aansturing puzzels
• Sleep mode (aanbevolen)

The main architecture (Figure 2) includes the USB-C adapters, puzzle boxes, bombs, puzzle box
hub and the computer. These components are powered by batteries and communicate with each
other via Wifi meshing (is not yet working). Through the puzzle box hub, a computer can be used
to configure and start the system. So, the puzzle box itself consists of several sides on which a
puzzle can be played. With the outcomes of all these puzzles, the entire box can be solved and
opened.

Figure 2. Main architecture

6.3. What are the differences between the designs of the 21-22
and 22-23 groups?
Overall, the designs of the two groups are not far apart. The topology is similar to each other.
What does differ is that the 21-22 group chose available ESP32 modules for the separate puz

13

zles, while the 22-23 group left the choice of microcontrollers open. This is because this group
consisted only of hardware students and the choice of microcontrollers also affects the software
to be written. The other difference is that the 21-22 group only tells how they realise the design
without indicating which design choices they made for this and what other options there were.
The 22-23 group did do this and described it in the design document.

6.4. What to consider when developing software
The hardware group (22-23), in addition to the recommendations in the requirements package,
has provided enough information to work with as a software group.

It was recommended by last year’s group that software students pick up the following steps:

1. Choose suitable microcontrollers
2. Understand the operation of wifi mesh + set up the web page
3. Create software design for puzzles and mainboard
4. Integrate the software into the puzzle box

With all these recommendations combined, the following points should be kept in mind when
developing the software:

• Software should be written separately for each puzzle as a module.

As described, each puzzle is a separate module so that these puzzles can be adapted
later when required. So, provide a good architecture in which puzzles can be modified,
added or removed without changing the whole structure of the software.

• Make sure the software works with the given hardware designs of groups 21-22 and 22-23.
Elwin’s research showed that the main board consists of a Raspberry Pi. The puzzles are
run on an ESP32, so the software for this should consist of a language compatible with
these devices, for example C++ or Python.

• The individual modules communicate via the I2C communication protocol. So, make sure it
is clear that the Raspberry Pi is the master and the ESP32s serve as slaves. The
addresses of the separate ESP32s should be unique and properly configured for this pur
pose.

• The software must be flexible to allow modules to be modified later
• If the puzzles need to be modified later, the software must be written in a way that can be

understood. Think of good documentation and comments accompanying the code. In addi
tion, use programming languages from the standard curriculum of the program. So that
other students can continue working with them later.

• The 22-23 has not yet been able to calculate the power supply of the puzzles, so this
should be taken into account when implementing the systems. Think of a certain function
or power-saving mode that turns off certain puzzles/modules when not in use.

• Provide test documents
• Provide well-documented software, think comments in the code and a handover document.

The intention is that after this project, the software will be almost ready for use, groups
should also be able to understand the software at a later stage. Also, for students with
lesser software knowledge.

Appendix A: Attachments

14

Figure 3. Safe side

Figure 4. Neotrellis side

Figure 5. Software side

15

Figure 6. Hardware side

Figure 7. Software side PCB

Figure 8. Safe side PCB

16

Figure 9. Unknown PCB

Figure 10. Hardware side PCB

Figure 11. Bus cable

17

Figure 12. Neotrellis side PCB

Figure 13. Light sensor

Figure 14. RPI PCB (Head)

18

Figure 15. Automation puzzle example

Figure 16. Software puzzle box example

19

Figure 17. Software puzzle game manual example

20

Figure 18. Neotrellis puzzle toggle example

Figure 19. Neotrellis puzzle 8x8 example

21

Figure 20. Neotrellis pattern example

Figure 21. Safe puzzle schematic example

22

Figure 22. Safe puzzle combinations given in the manual

Appendix B: References
[[2122_design]][1] L. van Gastel, J. de Bruin, T. Rockx, A. van Kuijk, and J. Baars, “Design docu
ment,” Avans University of Applied Sciences, 2022.

[2] L. L. Blansch, E. Hammer, L. Faase, and T. in ’t Anker, “Handover Report,” Avans University of
Applied Sciences, 2024.

[3] “RP2040 Datasheet,” Raspberry Pi Ltd, 2024.

[4] “A list of open-source C++ libraries.” [Online]. Available:
https://en.cppreference.com/w/cpp/links/libs.

[5] P. Johnston, “Embedded systems testing resources.” Jun. 2021, [Online]. Available:
https://embeddedartistry.com/blog/2018/10/18/embedded-systems-testing-resources/.

[6] Cpputest, “Github - cpputest/cpputest: CppUTest unit testing and mocking framework for
C/C++.” [Online]. Available: https://github.com/cpputest/cpputest.

[7] Catchorg, “Github - catchorg/Catch2: A modern, C++-native, test framework for unit-tests.” .

[8] Doctest, “Github - doctest/doctest: The fastest feature-rich C++11/14/17/20/23 single-header
testing framework.” [Online]. Available: https://github.com/doctest/doctest.

[9] google, “GitHub - google/googletest: GoogleTest - Google Testing and Mocking Framework.”
[Online]. Available: https://github.com/google/googletest.

[10] “Boost.Test - 1.75.0.” [Online]. Available:
https://www.boost.org/doc/libs/1_75_0/libs/test/doc/html/index.html.

[11] “GitHub - boostorg/test: The reference C unit testing framework (TDD, xUnit, C03/11/14/17).”
[Online]. Available: https://github.com/boostorg/test.

23

https://en.cppreference.com/w/cpp/links/libs
https://embeddedartistry.com/blog/2018/10/18/embedded-systems-testing-resources/
https://github.com/cpputest/cpputest
https://github.com/doctest/doctest
https://github.com/google/googletest
https://www.boost.org/doc/libs/1_75_0/libs/test/doc/html/index.html
https://github.com/boostorg/test

[12] Microchip, “PIC16F15276 - 25.2.4.3.” 2022, [Online]. Available:
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/D
ataSheets/PIC16F15256-74-75-76-Microcontroller-Data-Sheet-40002305.pdf.

[13] Espressif Systems, “I2C Driver - ESP32.” 2021, [Online]. Available:
https://docs.espressif.com/projects/esp-idf/en/v4.3/esp32/api-reference/peripherals/i2c.html.

[14] Espressif Systems, “ESP32 Technical Reference Manual.” 2024, [Online]. Available:
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_
en.pdf#i2c.

[15] Espressif Systems, “ESP32 Specifications.” 2015, [Online]. Available:
https://www.bitsandparts.nl/documentation/482/ESP32_Specifications_EN_v1.pdf.

Appendix C: Glossary
RPI
Raspberry Pi

Main board
The main board is the PCB on the bottom of the puzzle box, this communicates with the puzzles
and the bomb

Puzzle box hub
The puzzle box hub communicates with the puzzle box and the bomb, as well as helps with con
figuring them

SID
Security identifiers

game operator
Person who organizes a puzzle box play session

[1] Adjusting the clock speed for the main controller is not necessary, even though the RP2040 supports clock speed configura
tion (see Table 2)

24

https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/PIC16F15256-74-75-76-Microcontroller-Data-Sheet-40002305.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/PIC16F15256-74-75-76-Microcontroller-Data-Sheet-40002305.pdf
https://docs.espressif.com/projects/esp-idf/en/v4.3/esp32/api-reference/peripherals/i2c.html
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf#i2c
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf#i2c
https://www.bitsandparts.nl/documentation/482/ESP32_Specifications_EN_v1.pdf

	Research: Project Puzzlebox
	Table of Contents
	1. Microcontrollers used in the current state (Elwin)
	1.1. Research
	1.2. Summary
	1.3. Conclusion
	1.4. NOTES
	1.4.1. Appendix (Loek)

	2. Controllers (Loek)
	2.1. Main controller
	2.2. Puzzle module controller
	2.3. Conclusions

	3. Unit Testing Framework Research (Thomas)
	3.1. Research question
	3.2. General framework comparison
	3.3. CppUTest
	3.4. Catch
	3.5. Doctest
	3.6. Google Test
	3.7. Boost.Test
	3.8. Conclusion

	4. I2C (Thomas)
	4.1. Research question
	4.2. Puzzle Module and Main Controller Communication
	4.2.1. MCUs Supporting Master Addressable as Slave
	Atmega328p
	PIC16F15276 & ESP32

	4.2.2. Alternatives
	PIC16F15276 Registers
	Multiple I2C Peripherals

	4.2.3. ESP32 & RP2040

	4.3. Puzzle Module Detection

	5. Original Puzzle Box Functionality Research (Thomas)
	5.1. Research question
	5.2. Group 2019-2020
	5.2.1. Hardware Puzzle
	5.2.2. Software Puzzle
	5.2.3. Automation Puzzle
	5.2.4. Safe Puzzle

	5.3. Group 2020-2021
	5.3.1. Hardware Puzzle
	5.3.2. Software Puzzle
	5.3.3. Neotrellis Puzzle

	5.4. Group 2021-2022
	5.4.1. Hardware Puzzle

	5.5. Group 2022-2023
	5.6. Conclusion

	6. Research of hardware designs of previous groups (21-22 and 22-23) (Lars)
	6.1. Design of 21-22 group
	6.2. Design of 22-23 group
	6.3. What are the differences between the designs of the 21-22 and 22-23 groups?
	6.4. What to consider when developing software

	Appendix A: Attachments
	Appendix B: References
	Appendix C: Glossary

